Certain contact problems for a half—space 743

14, Rapoport, I, M, , On a class of singular integral equations, Dok, Akad, Nauk
SSSR, Vol, 59, N8, 1948,

15, Whittaker, E, T, and Watson, G, N,, Modern Analysis, Vol,1, Moscow,
Fizmatgiz, 1963 (Russian translation),

Translated by M,D, F,

UDC 539, 3

VARIATIONAL METHODS OF CONSTRUCTING MODELS OF SHELLS (*)

PMM Vol, 36, N5, 1972, pp, 788-804
V. L, BERDICHEVSKII
(Moscow)

(Received December 20, 1971)

The purpose herein is to derive the relationships of the theory of elastic shells
from the variational equation of the mechanics of continuous media in the ge-
neral case of physically and geometrically nonlinear models, The examination
of this question is interesting in connection with the fact that all the hypotheses
acquire the most compact and explicit formulation in the variational approach,
and a logical basis appears for the comparison and estimation of the various
models proposed in the theory of shells, Moreover, the shell models yield an
interesting illustration of models of continuous media in which there are firstly
higher derivatives, and secondly, internal degrees of freedom originate, as will
be seen later, The appearance of the internal degrees of freedom requires the
establishment of additional equations, in addition to the ordinary equations of
mechanics, in order to determine new parameters, and to raise the order of the
differential equations — additional boundary conditions and conditions on dis-
continuities, These relationships have been obtained by using methods devel-
oped for arbitrary models of continuous media with internal degrees of freedom
and with higher derivatives in [1, 2], Let us note that the extension of the the-
ory to inelastic shells is associated only with complicating the functional 8w#*
in (1,1) and adding new degrees of freedom due to plastic deformations, viscous
deformations, etc, Only the general part of the theory is contained herein,
Specific shell models will be examined separately,

1, Variational equation in the theory of elastic bodies, The
fundamental relationships of the theory of elastic bodies can be obtained from the vari-

onal equation [1 —
aionalequaton L1=3) s (CA dvde + 6W* 4 6w = 0 (1.1)
tv

where the Lagrangean A and the functional §WW* are the given quantities, and dW is
an integral of a linear combination of the variations in the displacements over the bound-

*) Presented to the 8th All-Union Conference on the Theory of Plates and Shells, Rostov-
on-Don, 1971,
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ary of the four-dimensional domain V X f and is found from (1,1), If the difference
between the kinetic and integral energies

A =, ("’7—-—— U\) (1.2)

;

is taken as the Lagrangean, then for models of elastic bodies §W* is the sum of the
work of the external mass forces on the possible displacements and the heat influx

sw* = ({oo (165 + Fiowh) dvas (1.3)
tv

while W is the sum of the work of the external surface forces on the possible displace-
ments and the work of the momenta at the initial and final times

oW = { { pdwtdsar — |{ 16wt x|
\4

t ov

ts
. (1.4)
Here and henceforth, V is an arbitrary associated volume, JV is its boundary, p, is the
density of the medium in the initial state, w', I,, p', F' are the components of the
displacements, momenta, and external surface and mass forces in the Cartesian reference
system of the observer 2}, S s the entropy, and T is the temperature,

For models of elastic bodies the internal energy U is a function of the entropy §,
some given parameters of the medium K,,, and the strain tensor components ¢;;

U=Ulei S K% 6= "0(8_ 15— Bo) (1.9)
ort art ore® aref i i0d i i
8~ij = Bk -6_§—‘ e wii = 8l ot ot w' (§, 1) =1 (F, 1) — ro* ()

Here ! are the Lagrangean coordinates of the particles, z' = ri ({’,#) is the law
of particle motion, z! = ry! (') is the initial position of the particles, Henceforth,
for simplicity adiabatic processes will be considered, The entropy & is considered spe-

cified, and therefore goes over into a number of parameters KB, Since 8§ . (), the
functional §W* becomes .
SW* = gs poF 0w’ dv dt (1.6)
%

Assignment of the boundary conditions reduces to assigning 8 when a domain corre-
sponding to the whole domain occupied by the medium is taken as the volume V in

(1.4).
2, Inftial state of the shell, Let us assume that in the initial state of the

body under consideration a Lagrangean coordinate system [° ~ [, L', [* can be selec-
ted such that the functions «* - roi (€, T*) take the form (*)

ro' (4, L9 = 7o' (€ 4 o’ () 2.1)
where z,' ({*) are functions giving the middle surface Q,, n,! is the unit normal

vector to Qo —hi2 <L << h/2, h - h (§*). The lower case Latin letters run through
the values 0, 1, 2, and the lower case Greek letters through 1, 2, Expressions can be

*) This assumption results in some constraints on the surface curvature Q, and snell
thickness h (£*), in particular, ribs are excluded on Q, . Such special cases must be
examined separately,
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obtained from (2. 1) for the covariant metric tensor components in the initial state

8wap = oap — 2Lboas + LPcoap = (1 — KolL?) @gap —
—25(1 — Hol) boass  Bowoa=0, g =1 (2.2)

Here @gap, Dpap and ¢, are the coefficients of the first, second and third quadratic
forms of the middle surface Q,, H, and K ,are the mean and total curvature of Q,,

respectively Ho — 150%boag, Ko = det | boss |/ det | aoap]

The determinant of the metric tensor g, must be known in order to evaluate the
integrals over the initial volume, We find from (2. 2)

e B (1 — 2H L+ KoL) (2-3)
go = det | g0)i;]. ay = det | aps3

3, Deformed state of a shell, The radius vector of points of a body in the
deformed state can always be represented as

P ) =2 @)+ e (3-1)
where ! ({2) is the radius-vector of points of the middle surface €2 in the deformed
state, n' ({2) is the unit vector normal to Q, z,' = 0zi({?) / d{* are tangential vec-
tors to §2. The vector frn' - f*z,' is the radius-vector of points of the fibers (5, {*)
(§* are fixed, and { a parameter along the fiber) relative to points with the coordinates
(0, £*). In particular, if f= = (), then the fiber in the deformed state remains perpen~
dicular to the middle surface,

It is natural to assume that the dependence of the functions f and f*on { in the in-
ternal part of the shell is determined by a finite number of parameters in the limit as
the shell thickness % — (), In particular, it will be shown in Sect, 8 that the static
Kirchhoff theory corresponds to the case when the first two terms are retained in the
Taylor series expansion of the function f : (*)

[ = (- ef + g (3.2

and the functions f*are considered zero, Further we assume that f and f* are known
functions of  containing a finite number of free parameters, the internal degrees of

*) If 2(%*) are components of the radius-vector of points of the middle surface in the
deformed state, then the functions / and f* should, as follows from (3, 1), satisfy the con-

ditions FO 8 =0, O )0
However, z‘({*) could be defined by other methods, For example, it can be assumed
that | hj2
FEneg ) e

Then the integral constraints —hz

h2 h/2

(rema -0 | reoya=o

M2 - hr2

should be satisfied in selecting the dependence of the functions f and /*on {.
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freedom which we denote by u4 ({2)

f=1Gwd, =g (3.3)

Such parameters in the case of (3, 2) are the quantities € and X. Knowing the depend-

€rices 0[ / d.u(] ]“ on S dll(l [ne parameters p.“ Il'le componems OI me metric tensor in
the deformed state can be calculated by means of (1, 5).

aga atg -+ 2V(a fﬁ)‘*‘
Vo 'V — 2fb(aYV§)A.f¥ + 2 C (2bs] '+ baybpof"f° (3.4)

g ~ap = Gap — 2fbap + fPeap + —=

Iy of" O o~
g"oa—ac+a§ a§a+a V f+( f—az-—*"a_gf)baY

_ [9f 9y af7 _ B
gwo—(gz) + 5 B fa = @apf

Here aqp, byp and c,p are coefficients of the first, second and third quadratic forms of
the deformed surface, V; is the covariant derivative with respect to the connectedness
in Q.

It is seen from (1, 5), (3. 3), (3. 4) and (2, 2) that the strain tensor components are known
functions of the first, second and third strain tensors of the middle surface (*)

Aap = Y/3(02p — Goap),  Bap = bag — bgas,  Cap = */2(Cap — Coap) (3.5)

as well as {, p4 and V, u4
ij == &5 (g‘ AaB‘ Ba,"b }LA, Va’\.uA) (36)

The functions (3, 6) are easily written down in general form, however, it is more conve-
nient to obtain them again every time in constructing specific models of shells,

Let us determine on which quantities the components of the shell particle velocity
vector w'i (§, §*, ) depend under the assumptions (3, 3), Differentiating (3,1) with
respect to time (the time was a parameter in all the preceding formulas in Sect, 3), we
obtain (3.7

i o i ag i of 8 opf 0% ot

w =g i const =0 4+ (18, — fz' ”k) pre + =z A or n' + GuA ot Za'
where vi - @xi/ 0t are vector velocity components of points of the middle surface,
The easily provable relationship

k
{ an . . v i B8 i
n = 5T x'en, Pl z* = a*Pxp (3.8)

was used in deriving (3, 7). Thus, for given functions f and /= the vector velocity com-
ponents of points of the shell depend in a known manner on the following parameters(*®):

55 4
i e x dv ! o .
W w (g. v, Fe z.k, pA, "37—) 3.9)

*) The third strain tensor is expressed in terms of A, Baar @gap and by 4p by algebra-
ic relationships,

**) The components of the normal vector are expressed in terms of z,? by algebraic
relationships,
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4, Averaging of the variational equation, The variational equation
(1.1) in elasticity theory is considered in the class of all twice-differentiable functions
ri (G, &) (or wr = ri — roi). To obtain the fundamental relations of the theory of
shells, let us consider the variational equation (1,1) in the class of functions (3, 1), (3, 2)
(*). Hence, the integral of the action

1={\Ardvar

iV

as well as W and 8W* become functionals defined by the functions zi ({2, ¢),
pA (£, t) (or ui = xi — z4i, p4). Let us find the form of these functionals, Let
us take domains which are the direct products V = 4 X &, where Qg is any part of
the middle surface with piecewise-smooth boundaries, and | {|<C k/2 ., as the domain

V in(1.1).

Since hie
I=SSAVg_od§d§‘d§2dt.—=S§ § AV=dtdsdt, ds=V aedt'de® (4.1)
tv { Qo —h;2
then

i
where L is the Lagrangean averaged over the plate thickness
h/2
L~ S AV xde
—h/2
We take the difference between the kinetic and internal energies (1, 2) as the Lagrangean,
Then L is represented as the difference between the averaged kinetic and internal ener-

1 (&, p4) =S§ Ldsdt

gies h<-z - _ hig
L=K—®, K= { p 2 y¥a ©- g pU VRde  (4.2)
—h/2 —~h/2

Formulas (3, 6), (3. 9), (4.2) and (1, 5) show that the averaged kinetic energy K is a

function of the velocity vector components of the middle surface, their derivatives along

the surface, the tangent vectors Z,', and also u, du"/9t , and the shell characteristics

Po K~ K(,,i, ot gl !J,A,—(’;L—A, 0o, h) (4.3)
Lt . at P

while the averaged internal energy is a function of the first and second strain tensors

of the middle surface, the parameters u4 and their derivatives Vo~ p4, and the shell

characteristics K8 (we include py and h among the parameters A to cut down the
iti ~
writing) @ = O (Aas, Bap, 12, V," p?, KY) (4.4)

The Lagrangean depends substantially on the second derivatives of the displacement
vector of the middle surface (the argument dvi /[ @{* in the kinetic energy, and the

*) Such a method of obtaining the equations of the theory of shells, the passage from

the general class of functions to functions of a special kind, is substantially the Ritz
method, It was used by Reissner to construct a refined model of the linear static theory
of plate bending, However, Reissner used a variational principle whose extension to arbi-
trary dynamical physically and geometrically nonlinear models causes difficulties,
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argument B, in the internal energy), as well as on the intemal degrees of freedom u#
and their first derivatives, Substituting (3,1) and (3, 3) into (1, 4) (taking account of the
equalities §ri== dw' and ni=— xi*n, (A6u" / AC*)) and integrating with respect to §,
we obtain the following averaged expression for §1¥:

oW = QQ(MH + P "5“ + P aout )dqdé—{w
Q

0

§ ﬂ{() du' 4 M2 B 4 Sdw *)dsat - (4.5)

L8y

[ ou +["U§%—+/16u )ds]

>
Q4 3*’

iy

where 9Q, is the boundary of the surface €, and the coefficients of the variations are
determined by the formulas

= (g VR P (P (— 85 VR

; [ . 3 oAty ;’"""}
2 B ‘ . i e ¥
;A }\pl (‘n auA % Xy 6}&‘4 ) ‘/ 3‘:;)
niz nie
0=\ pVmds, M= \ p(—na"f+8 ) Vrdt (46)
—hie o
hao 3 a "
; 3j Ve
Saq = \ pi (n% "3;;7{“ + i) V », dg
—hi2
hig hig ‘
o=\ nvza 1= {1857 Vnds
—h 2 i i
' h:2 ai
B Y P
[A S K ﬁ}iA ”T' ) V g
-

— e 8h  8h
]/ul == _gi- s &= (iﬁtﬂ Byah §%, gyap = Epyad - gi'; ”a“"g;'
V&; = L+ coapl?)

%oy 2
Here {A} denotes the sum Alv.pp i <l lrm—nps 42 is the determinant of the metric

tensor of the surface dQ < [ in the deformed state (9Q is the boundary of ), (g2
is the determinant of the metric tensor on the surface 2, > { in the initial state, 7,
are components of the unit tangent vector to d¢2,. In the case of a constant-thickness
shell %, agrees with the quantity % defined by (2, 3),

Let us examine the meaning of the quantities (4, 6) in the particular case of linearized
theory and under the assumption that the fibers remain perpendicular to the middle sur-
face under strain, i,e, /% == 0. Within the scope of linearized theory only the first mem-
ber f= { of the Taylor series expansion of / should remain in the products jp; ,Hence
{p; = Gp;. Evidently, Pds is the sum of forces acting on a shell element 43 X  and
applied to the side surfaces ¢ == =+ /2, P;*ds is the moment of tangential forces acting
on the side surfaces relative to the middle surface, multiplied by the normal vector
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to the middle surface, Q; is the transverse force, and M;“ is the moment, relative to the
{ = 0 axis, of the external forces acting on the surface ¢Q X { multiplied by n; </
is the momentum of a shell element averaged over the thickness, /;* is the moment of
momentum of a shell element multiplied by »; , The meaning of the quantities P4, &4
and I, is related to the meaning of the parameters TR

An expression for §W* is obtained analogously to (4, 5)

ow* = { (p*ou + P e+ P *op*) ds dt (4.7)
ARATAN 5
tQ,
where
hi2
Pi*: S pOFi V;d;
~h/2
h.2
P = | boFy (= ma 4 057 Vg (4.9)
—h 2
h-2 af 3
Y . i* -
PA* T_h\l2poph~ (nk T}F + xlk alJ.A ) V‘K'dc

The quantity P;*do has the meaning of a total mass force acting on an element do X
£, P;** (in the linearized theory for f* - ()) is the moment of external volume forces
relative to the middle surface, multiplied by the unit normal vector n;.

In conformity with (4,1), (4. 2), (4, 5) and (4, 7), the averaged variational equation
(1,1) becomes

5‘ S(K__(D)d;dt+ S w(Pﬁ- Pi*)au" 4- (P + pi*z) ?T“: T
(¥ e °

(Pa+ PaM)out J ds dt +S \ ((),.(‘)ui+ ..1-1;_~_‘Z§j‘: + S,@M) dsdt — (4.9)

[l

Py
()‘a H

¢ i a 0 i '
[\(<1i>6u’+1i o +1A6p'4)d$]; =0
S Ji
5, System of equations of the theory of shells, Let us calculate the
variation of the first member in (4, 9) by considering that the functions p4 in the domain
of variation {*,f are twice, and ui fourfold differentiable

¢ K o oK .
of (K doar = (2 ouit 2 opjdsar+ (5.1)
fﬁ, ; éa ’ B !
o ok d 9K \. . 1. O OR  a6u K h
\(-—'—»—,———SHclsdt--[S(——éu‘ 4 2 Ad-]
Qon‘ 91y ot a"xl’) e } vt ot o de,t oL* I 6u“‘6p' /) N i
Here

oK _ 0 0K 0 go K g 0 i (5.2)

Sul at gt gt " oe,! a7, at*

5K K 8 akK . opd
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v, are the components of the unit vector normal to the curve §(2,, tangent to the sur-
face 12, and directed exterior to Q,, and V.’ is the covariant derivative with respect
to the connectedness of the surface Q.
Using the formulas (*) bu.
Ayp = : Jlg)‘. ‘SBCLG = niva Vﬁ out (:)3)

AL

! o ~ 1 N !/”T— |
Vu"(pa — %. VQQYWQQ Va (pR e ’TVM ,..}.7 %, 1 == / L . oa == det Eiaa{ﬂl

g

for the variations of the internal energy, we obtain from (4, 4)

0C /6D , o s
8 ({ wasar | (é-;éu‘ + 2B dua)ds de -+ (5.4)
<. ele 6u (’)}L‘ /
t Qo t Qe
¢ : i for
S ¥ (n*Pduy — q*du,, 4 m*fn; —@:i— 4 ?CD!; (“)pﬁ*) vy dsdi
faf, N Mg
Here
8 o net (V5 g% — nebb Vs ned 4 gBhge
S i1 (Va™ q% — n%8by5) — 2457 (V" n* - ¢Pbg*)
50D . ( adfy V.- O(D;’*i_
6}’5‘ \ a}LA = 5H1A )
1 30 1 00 .
af 2 i e . "?'s% @ af B e {.t_
n T oA, mBh.%, m T 9B, (5.9)
q‘l S V’;;"m“r" (‘36)

Also pa® denotes the derivative V, p*, Su, and du, are the projections of vari-
dtions of the displacement on the tangent and normal to :

Su, = x,0u;, du, - nidu,.
By integration by parts, the second member in (4, 9) is reduced to the following:
- : . . o 08 . :
) |(Pit- Pt Ou + (P P O (Pack Paryout|dsde =

oLt
t Qe

et P —vo e+ P o' 1 (Pat Pa¥Bplidad +
i

CC @+ peoysuiv, dsar (5.7)
i 80,
Substituting (5, 1), (5.4) and (5, 7) inte (4, 9) and first assurning the variations Su' and

84 1o be zero on the boundary of the three-dimensional domain £, X  ,we obtain
the equations of the theory of shells

o = o F P P VS (P P =0 (5.8)
et 't
g{ﬁ; -~ —sf;%«« FPad Pa* =0 (5.9)

*) The parentheses on the indices denote the operation of symmetrization; ¢* in(5,3) are
contravariant components of any two-dimensional vector in the t* coordinate system,
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The quantities in these equations are defined by (4, 6), (4. 8), (5. 2) and (5, 5), Equations
(5. 8) are the equations of shell motion, (5, 9) are used to determine the degrees of free~
dom A .The equations of motion take on an especially simple form in the static case
(the kinetic energy is K = 0). Projecting (5, 8) onto the normal and tangent plane to
0 and using (5. 5), we obtain

Vs ¢® — n*bg = TR [P, - P — V(PS4 P (5.10)
Vo n® 4 bt = 7 (P PE— V(PSP (541)

The members in the left sides of (5,10), (5,11) agree outwardly with the corresponding
terms in the equilibrium equations ordinarily used in the theory of shells, In the right
sides of (5,10), (5.11) are written what should be understood to be the external forces
acting on a shell element, Let us emphasize that the tangential forces on the surface

¢ = 4 h / 2 yield a contribution to (5,10) which is the projection of the equilibrium
equations in the normal direction to the middle surface, This contribution is described
by the tensor P;* (see (4,6) ). The tensile force tensor 123 and the bending moment
tensor m*3 are given by the equations of state (5, 5). The moment equations, which are
usually appended to the system of equilibrium equations (5,10), (5,11), are the definition
of the quantities ¢* (5, 6) in the theory under consideration,

In the dynamic case (kinetic energy K += () , the projections of the variational deri-
vative y™! 8K / Sui on the normal and on the tangent planes to Q ,i.e, Yy ni0K / dui
and — y~'z,i0K/8ui , should be added to the right sides of (5,10), (5, 11)., The dynamic
equations are simplified for shell models in which it is assumed that the normal to the
middle surface goes over, under deformation, into a normal (the functions /* in (3,1)
equal to zero), As is seen from (3, 7) and (4, 2), the kinetic energy depends on ,* and
the velocity gradients dvi/ ¢{* only on terms of the combinations

L. . ant . ¥
a(lB = gijxalz,@], n'ﬂ = W = — Ilznk a;a
The variational derivative of X becomes
8K d oK ~ 1 d 0K oK
- _ g o8 e~ (ke 9 "o, OR =
o o — T (z MG e T R ]  (312)

Substituting (5,12) into (5, 8) and introducing the notation
I ks @ 9K

3 - "~ 3 -
Ni=Tom g o (3.13)
we write the dynamic equations as follows:
NP lﬁ_iﬂ i L i 0 oK
Ve N (n : am)bg‘wr i S
S o a x
PP+ PF — VS (P8 + P (5.14)
~f ap 2 8K By a i ., 8 8K
L e Rt =~
s 1 ia * o « *a
— P+ P — Vo (P + P (5.15)

The relationship (5, 13), which is the definition of N3, can be considered, as before, as
the equation which replaces the equation of the moment of momentum, Projections of
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the derivative of the momentum on the normal and tangent with respect to time as well
as the dynamical addition to n*? (the second term in parentheses on the left side ; this
term can be essential only in nonlinear theories) appeared in the equations of motion
(5.14), (5.15),

Let us consider the additional relationships which can be extracted from the variation-
al equation (4, 9), For arbitrary variations dui and Su* on the boundary of the V -0 ¢
domain (4, 9) reduces to the following:

0K a K Sx x ez . g
K — = s — T A 4 P4 Py =+ )i] ou' -
Safzo {[< 3.271 ot ava‘ ) ( :

(M3 — 1m™vsn) ‘"’;6“

(5 oo (1) e s

This equality cap be satisfied if it is assumed that

+ ( vajop*‘} dsdt + (5.16)

_ _ pA_ p*x n i 17.9 K
Qi = (’m i = Y — Py P At ap i oz} Va
ME O oymTvan,, 84 =2 1»4 Vo (5.17)
()p.l‘
ok N K JR
Iy ==, 1.5 . [~
< l> P i 01:11 A U[J:A

The equality (5,186) is also satisfied for other values of Q;, M, . .. (this question
has been considered in [2] for arbitrary models of continuous media with high deriva-

tives), However, in all the relationships used later, the quantities (J;, M, ... enter
in combinations for which the existing arbitrariness is immaterial, Formulas (5,17) can
be considered as the definitions of the quantities (J;. . . . . L.

8, Boundary conditions, Asin general theory of models of continuous media,
let us give the boundary conditions by specifying the functional

54 - { (08 4- AL R I T )dsdt (6.1)
i, %
which is the work of the external forces on the possible displacements du* and Su4
on the shell boundary, The external forces do work not only on the displacements dut
of the shell edge, but also on the gradient of the displacements a6u’ / 8L*. The work
on the gradients of the displacements is performed, in conformity with (5,17), by the

bending moments
SQ M d(’)u ds dt \\ ym* V'n, dﬁ.’u

t gS¥y UQD
It is convenient to decompose the gradient of the displacements 36u’ / L% in (6,2)
into the derivative along the normal to J{2, and into the derivative along g4,

ds dt (6.2)

abut . (’,’ adnt ) l (1,'3 odut ) L OBt | adu'
vy [V :

‘r - REE——
o (,3 T Ta 3"" Vi Gv_ 7 Ta g3
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Then the work of the bending moments is represented as

S 5 M* a::f dsdt = S B T(m““vav(,niag—:i +m Brav,,nl )ds dt (6.3)

Yot ° ot

The first member is the work of the bending moments, and the second one of the torques,
We represent the total work of the external forces on the possible displacements by using
(6. 3) and integrating by parts, as

04 = Sg {((), ds rm**t vin,)éu + ym**vgvan, S -{—SAﬁp. }dsdt +
e
55 2 (am**oven,bu') ds dt (6.4)

t 082

The last integral in (6, 4) is zero if there are no points of discontinuity in the quantity
ym*31,v;n;0u’ on the contour 4Q,. The procedure of integrating by parts is the repla-
cement of the system of torques by an equivalent transverse force, The expression (6,4)
for 84() possesses the advantage that the variations 8u' and Adu’ / dv are independ-
ent,

Let us prescribe the work of the external forces on the shell boundary

84 -~ § ( Q' 4 M B8 op )dsdr (6.5)

I&Q

Here Q; is the external force applied to the shell edge, M is the external bending mo-
ment, Various boundary conditions can be obtained from (6, 4) and (6, 5) depending on
the construction of the function class, For example, if displacements are given on the
boundary, then du* = 0O and by virtue of the arbitrariness of 7; 38u’ / Gv and HpA

"lmﬁval\,;,1 - M, Sa— 84 (6.6)

When there are no constraints on the displacements on the boundary, then by virtue of
the independence of Su* and 9du' / Jv we obtain from (6, 4) and (6, 5) in addition to

(6.6) 0 — 5 (rm™ tavemy) = Q (6.7

If (; and m>> are defined in terms of the internal and kinetic energies by (5,6), (5,17),
then the left side of (6.7) can be considered as the internal stress resultants originating
to equilibrate the external forces (Q;. It is essential that these internal stress resultants
depend on the curvature of the middle surface and the curvature of its boundary,

As is seen from a comparison between (6,4) and (6, 5), the last integral in (6 4) vani-
shes and in the presence of points of discontinuity M ; of the quantities YM**TLVult;
on the boundary. We obtain the following relatlonshlps:

(ymadv,tan;), = {(ym*Bvatan;)_ (6.8)

at the points H s for continuous variations §u; on (), from the equality of this integral
to zero, The plus and minus symbols here denote the limit values of the quantities upon
approaching j}f from the right and left along 9Q,. The equality (6, 8) means that if
the normal vector to the middle surface is continuous in the deformed state, then the
magnitude of the torque should be continuous (in linearized theories ¥ = 1).

The equality (6, 8) makes sense only when the appropriate limits (ym*31,van;) 4
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are defined, The conditions at the singular points at which there are singulatities can
also be obtained by variational methods, and even the nature of the singularity can be
determined, however, this is a topic of a separate investigation,

7. Conditions on lines of discontinuity, On the surface £, let there
be a line T on which the derivatives of the displacements and the parameters 14 can
be discontinuous, The line I' generally moves along Q. Let us establish the conditions
which should be satisfied on the lines of dlSCOH[]nUlty,

A moving line ' outlines a two-dimensional surface

T K (s, t)
in the three-dimensional space of the variables (!, o2, i, Witiout limiting the gene-
rality, it can be assumed that this surface separates the domain Qj X ¢ into two parts,
Let quantities in one of them be denoted by the subscript 1, and in the other by 2, Thne
quantity of conditions on the discontinuity depends on the construction of the function
class in the neighborhood of the surface of discontinuity 1' - ¢{.  The admissible func-
tions ui and p4 in each of the domains 1 and 2 have fourth and second derivatives, res-
pectively, by assumption, Let us consider the components ut of the displacement vector
to be continuous in 1" ¥ / , Assumptions relative to IL"* and the derivatives of ui are
made below,

There are two possibilities for the functions (7,1): (1) The functions (7,1) are speci-
fied, the motion of the line of discontinuity is known, and the admissible functions under-~
go a discontinuity on a surface fixed in advance, and (2) the motion of the line of dis-
continuity is to be determined, the admissible functions may discontinue on any (no lon-
ger fixable) surface I' X ¢, therefore the surface I' > ¢ itself (the function (7,1) ) is
also subject to variation together with «! and u4,

Let us first consider the case (1) when the motion of the line of discontinuity is known,
The Stokes formula which was used to evaluate the variation

GSS(K-— D) ds dt (1.2)

[

(7.1)

for the integration by parts, is complicated for functions having discontinuities, and is

written as n
Vo0t 4 LV dsdr =\ \ Wiy, dsde +
f(Fe )i =A )
H Ads'J". Q\(cm WP vy dsdt (7.3)
2, t e

oF*
[A] = Ay — Ay €~ —Vaig;

where A and (D, are arbitrary functions undergoing discontinuities on I' >0 ¢, ¢ isthe
velocity of the motion of the line of discontinuity along its normal, and by assumption
the unit vector v, of the normal to I’ is directed from the side 2 to the side 1, The ad-
dition
PN JdK . i OK Jbut . aRh A , 1N 4 IK .
\yr"ﬁoui -+ 7 ralRE pont et ( T — ot 1)61u v
a | J Cor, )

i | Je 61‘1‘ Jt* i uY,
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) B ; obut |
— ['T (n*fzig — gPn;) Su' -+ Ym**n; T

W - b ]va}dsdt =0 (7.4)

appears in the expression for the variation (7, 2) in conformity with (7,3), The fact that
this addition is zero follows from the variational equation (4, 9) and the independence

of the variations on Q, and ['. Besides the functions u let dui/d&*, p4 also be con-
tinuous, Then z o

[‘Slli] =0

A R LTS B

Hence, (7, 4) reduces to

([ oK oK 5 6K ) . .
g\{([ ard _\C - oz, - -;7 Jo ! } v, — [(Yn*Pxie — 14°n;] '\’B) dui +

_a.,i_ — x5 bu’ . {ﬁ gk . oM 1 4 .
(‘ T ‘c (pm**n;] v4 } P T(\. o Jc 'faplA qu>6p }dsdt =0

Extracting the independent variations from this relationship by integration by parts (ana-
logously to Sect, §), we obtain the following conditions on the discontinuity;

[ oK oK 8 oK 1 . .
| — — = ~ vy — [Tr*Pri — 1q*N;) ve — 7.5
oyt ] ¢ dz )} T O gyt |t (rnaia — ¥R va (7-5)
d oK ,
75 Ta ({a) }c-[7m“n]xa) =0
[2K vy — fym*ngg vaas = 0 (7.6)
! 31’11 ]
c AR - 7 -
LS PO N (7.7)
[ ou?d | "o, J
If a discontinuity of the derivatives of the displacements wu,! = v*(du! / 0(*) along

the normal is assuroed, then the variations 6u,! become independent on both sides of
the surface I' X ¢  and we obtain from (7.4) in place of (7, 6), that the combination
K

T Vit — TMABnv,vg = 0 (7.8)
I'Z
vanishes on each side of ' X {. Analogously, in the case of a discontinuity of 1*on
[ < {, the quantities oK o . -
.Ac—;—&-vl == 0 (1.9)
Jp ap

vanish on each side of the surface I' X ¢,

Now, let the motion of the line of discontinuity not be known, and let it require to
find the solution of the problem as a result, To do this, additional conditions are neces-
sary, We abtain the appropriate conditions from the variational equation (4, 9) by con-
sidering it in the class of all functions undergoing a discontinuity on some (no longer
fixable) surface I' X f. The surface T X ¢ itself is hence subject tovariation together
with the functions ufand p4

It is seen that the variational equation (4, 9) reduces to the equality (7, 3) in which the

member S§[K——(D]\’a5§ad3dt
1

is added in the left side, where 84* is the variation of the functions (7,1), and du' and
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6};9- denote a variation of the form of the functions ui and p*.
Let us consider that 1%, u,! = dui / 3L*, u** are continuous on 1" ¢ ., In this case
the total variations

S’ = 81’ 4 uladl’, Spmula = Sula + V5ula02” Sup® = opt 4 Ve
are continuous on I’ x ¢
(Sa'] =0, [duta] = 0. [8up] =0
First assuming 8§* = O (hence &y - 8). we obtain (7, 5) - (7,7) from (7, 3). Rela-

tionships which reduce to the following energy condition when using the kinematic con-
ditions s

K s . ’ -
O—K J~( — V3L — Ym0 c— —viimd - U 7.40
[©— K]+ (= T ol (e — v (7.10)

wi = [\T'\U!«’fxl ’\‘a'\"%. (!)A = lvuc :‘} v
‘ §

: . OA ath
( d

follow from (7, 8) for arbitrary 80* .
1f the derivatives du' / 9L* are discontinuous on I' < { then we obtain (7, 8) from
(7, 8) instead of (7,6), and the following relation instead of (7,10):
an i Ak d an
(O — K]+ {‘m—, ¢+ |

at r!z‘ai

, )vl — TREIT NG A TGN,
!l.l‘;

i { oK . [ 9K a0, -
—_— —c— ym*van, T L O -(-~——c— : valwd -0 (71
(e b0 (= ot 0

Ot v

If the parameters it are also discontinuous on [' 7 ¢, then condition (7, 7) is replaped
by (7.9), and the additional energy relationship has the form (7,10) or (7.11) (for ' =0
or B! == (). Hence, the last member in (7,10) vanishes by virtue of (7,9),

8, Illustration, Linear statics of {sotropic plates, Let us consider
physically and geometrically linear models of isotropic plates for which the internal
energy pl’ is oL (82,)1.: 2%081; {3.1)

Because of the geometric linearity of the theory, (1, 5) and (3, 4) simplify (f — &, /%,

A,y Bis Cap in (3,4) should be considered small), and result in the following relation-
shipss: PR IO LB, - Vigly (3.2
i ( 011 i i{“
€52 "?2_ \Mdg— - ""“(ﬁ:g - Enn (): -

The corresponding linearized expressions for 4,5 and /s, are found from (3, 5)

adryt

i 4
Ay - Vialipy Byy NV, uy - e Wy malag 8.3)

Let us take the hypothesis that the normal to the middle surface remains normal under
deformation L0 (8.4}

and the function s has the form (*)(Footnote on the following page).
= Feyna Tl

(8.5)
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Then
813 = 11'3 —- gBa.’i
1 ( de L _ox

o — T —_
0a T2 a;zT;gE' o

; ] emeesx 8.6)
Therefore, the parameter ¢ has the meaning of deformation of a fiber normal to the
middle surface, and % is the gradient of fiber deformation,
We obtain for the averaged internal energy (the plate thickness is considered constant)
k2
2 =2\ pldg = h{h(1L2P 2,4~ 204, % - (M- 2p) et} -
2
/3 %) - y v 01 .
T AR B, MBI = 2RI (] ) ) 8.7)
k3 e e he < ay dy

PR} .
T —— +n fl — o
S bt el 50 gt oo

The last two terms can be substantial only on the edge of the plate, while they are of
the order of 42/ L* far from the edge as compared with & (» + 2p) €* and #* (2 — 2p) ¥*
respectively, and they can be neglected { L is the distance whithin which e and 7%
vary by the characteristic value),

The tensile stress resultants and moments are defined by (5, 5)

WP R 2 e
, (3.8)
m? == g (AB 2T b DB )
Equations(5,10),(5,11) become
hy2 'l,{.’
23 i I Pl ’ Fds > Fz«— de
v Vam® =pet P Vo op 7t —p Y \ oFdl |V, ) eFeds
‘;l,'_' --ha
e 2 .
Vr,“)'"‘ - . (P-'( +p sy \ ('[;z {]:) (8.49)

. /
c-hy2

The plus and minus subscripts here denote quantities on the surface { == /; 2 and & =
--h/2 ,respectively, p is the projection of the force acting on tne surfaces ¢ -h/2
in a direction normal to the plate, p* is the projection of this same force on the middle
plane of the plate, and the notation for the external mass forces £ and F*are analog-

ous, The Euler equations (5, 9) for the parameters ¢ and 7 reduce to
’

7t 4
T e N T A R S ST
e ho2
R s 2 it oo
TR 20— = )+ \ o (8.10)

—h 2

*) It should be noted that the hypotheses resulting in the Kirchhoff model are formulated
incorrectly in many monographs and papers, Namely, besides the condition (8, 4), an as-
sumption is made that the transverse fibers are not deformed, In reality, in the case of
plate bending (4, = 0, e = ) deformation of a transverse fiber, described by the para-
meter %. yields a contribution of tie same order of smallness to the elastic energy, as
does deformation of the middle surface,
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Eliminating the parameters ¢ and ¥ from the system (8, 8) — (8,10), we arrive at the
equations of the theory of plates,
The author is grateful to L, I, Sedov for discussing the research,
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We construct an algorithm for seeking a real canonic transformation of a linear
Hamiltonian systemn of differential equations to normal form, As an example
we consider the application of this transformation in the restricted three-body
problem,

1, We consider the Hamiltonian system of differential equations
dx ! dt = THH({Hx, X (I T T e Ty) (1.1)

The variables 7, and x,,; are canonically conjugate {zr are the coordinates, Zn.:
are the momenta) in the corresponding mechanical problem, The 2 th-order symmet-
ric matrix H(?) is assumed real, continuous, 27-petiodic in t. The matrix I has
the form .

0 E !

'y
i

1= (-1 - —I 2= —E, detl=1)

where E is the nin-order unit matrix,

The solution of a linear system is usually chosen as the generating solution when in-
vestigating stability, analyzing nonlinear oscillations, constructing approximate solutions
of nonlinear Hamiltonian systems, Therefore, it is desirable to choose those coordinates
in which the solution of the linear system (1,1) is described most simply,

System (1,1), as also every linear system with continuous periodic coefficients, is re-
ducible [1]. This means that there exists a linear change of variables with a continu-



