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The purpose herein is to derive the relationships of the theory of elastic shells 

from the variational equation of the mechanics of continuous media in the ge- 
neral case of physically and geometrically nonlinear models. The examination 

of this question is interesting in connection with the fact that all the hypotheses 

acquire the most compact and explicit formulation in the variational approach, 

and a logical basis appears for the comparison and estimation of the various 
models proposed in the theory of shells. Moreover, the shell models yield an 
interesting illustration of models of continuous media in which there are firstly 

higher derivatives, and secondly, internal degrees of freedom originate, as will 

be seen later. The appearance of the internal degrees of freedom requires the 

establishment of additional equations, in addition to the ordinary equations of 

mechanics, in order to determine new parameters, and to raise the order of the 
differential equations - additional boundary conditions and conditions on dis- 

continuities. These relationships have been obtained by using methods devel- 
oped for arbitrary models of continuous media with internal degrees of freedom 
and with higher derivatives in fl, 21. Let us note that the extension of the the- 
ory to inelastic shells is associated only with complicating the functional 6W* 

in (1.1) and adding new degrees of freedom due to plastic deformations, viscous 
deformations, etc. Only the general part of the theory is contained herein. 

Specific shell models will be examined separately. 

1. VItiational aqurtfon in the theory of elr#tic bodler. The 
fundamental relationships of the theory of elastic bodies can be obtained from the vari- 

ational equation [ 1 - 31 
BjlAdrdt+dW*+6W=O 

1V 
(1.1) 

where the Lagrangean A and the functional 6 W* are the given quantities, and b W is 

an integral of a linear combination of the variations in the displacements over the bound- 

‘) Presented to the 8th All-Union Conference on the Theory of Plates and Shells, Rostov- 

on-Don, 1971. 
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ary of the four-dimensional domain v X t and is found from (1.1). If the difference 

between the kinetic and integral energies 

is taken as the Lagrangean, then for modeb of elastic bodies 6ti’* 
work of the external mass forces on the possible displacements and 

6W* = &I~ (T6S + Fi6wi) dr dt 
fV 

(1.2) 

is the surn ot the 
the heat influx 

(1.3) 

while 6W is the sum of the work of the external surface forces on the possible displace- 

ments and the work of the momenta at the initial and final times 

6W ~= C C pi6W’ da dt - 
; Bv 

1 C Ii6W’d,l:: 
-+ 

(1 A) 

Here and henceforth, Y is an arbitrary associated volume, dV is its boundary, pO is the 

density of the medium in the initial state, w’, It, pi, F’ are the components of the 

displacements, momenta, and external surface and mass forces in the Cartesian reference 

system of the observer z’, S is the entropy, and T is the temperature. 
For models of elastic bodies the internal energy u is a function of the entropy 8, 

some given parameters of the medium K,, , and the strain tensor components eij 

ci = U (Cij, ST KB)* cij x ‘12 (g_ij - g(o)ij) (1.5) 

ark aG ad 
g_ij=gklT-, g(0)ijyg,l$$7 

as w ap ’ 
wi (C’, t) := ri (& t) - roi (i’) 

I, 

Here ci are the Lagrangean coordinates of the particles, xi _= ri ( 51, t) is the law 

of particle motion, r’ = r,’ (5’) 1s t e Irultla position of the particles. Henceforth, h . . 1 

for simplicity adiabatic processes will be considered. The entropy A’ is considered spe- 
cified, and therefore goes over into a number of parameters KB. Since 6s 0, the 

functional 6 W* becomes 
6W* ~- R PoFiGw’ dt dt (1.6) 

Assignment of the boundary conditions reduces to assigning 6W when a domain corre- 

sponding to the whole domain occupied by the medium is taken as the volume v in 

(1.4). 

2. Initial atata of the #hall. Let us assume that in the initial state of the 

body under consideration a Lagrangean coordinate system co = 5, L1, 5’ can be selec- 

fed such that the functions xi -. ro* (5, 5”) take the form ( l ) 

rgi (E, 1;“) =- 50’ (5”) .t. ;d (:‘I (2.1) 

where x0’ (5”_) are functions giving the middle surface <2,, rZoi is the unit normal 

vector to <Jo, --h/2 < 5 < h/2, II -- h (5”). Tile lower case Latin letters run through 

the values 0, 1, ‘2, and the lower case Greek letters through 1. 2 . Expressions can be 

l ) This assumption results in some constraints on the surface curvature Q, and shell 
thickness h (c”), in particular, ribs are excluded on 62,, . Such special cases must be 
examined separately. 
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obtained from (2.1) for the covariant metric tensor components in the initial state 

g(O)aP = oo.l9 - &PO,? + 52Coap f (1 - &L2) soap - 

- %(I - HOC,) &a; &o)o, = 0, g(oMo = 1 (2.2) 

Here oOa$, ho,8 and co33 are the coefficients of the first, second and third quadratic 

forms of the middle surface Q,, Ho and K o are the mean and total curvature of Q,, 

respectively 
Ho = r!2a;Pb”a$, KO = det I) boap I( / det II HOOP (I 

The determinant of the metric tensor gCojag must be known in order to evaluate the 

integrals over the initial volume. We find from (2.2) 

x:_&=- l--Hz 
a0 ( o_ -t KoC2)* (2.3) 

go = det II g(o)ij fl. a0 = det I] ao13 !I 

3. Deformed state of A Ihell. The radius vector of points of a body in the 

deformed state can always be represented as 

: (j, 5”) = Xi (5”) + In’ + f35,f (3.1) 

where xi (5”) is the radius-vector of points of the middle surface 22 in the deformed 

state, fz’ (5”) is the unit vector normal to $2, zzi 
tors to 52. The vector jr.?' .)- f3xZi 

= LLri(<~) / dca are tangential vec- 

is the radius-vector of points of the fibers (5, 5”) 

& a parameter along the fiber) relative to points with the coordinates 
ig if;. f~~~i$Ziular, if f” =. 0, then the fiber in the deformed state remains perpen- 

dicular to the middle surface. 

It is natural to assume that the dependence of the functions f and f” on 5 in the in- 

ternal part of the shell is determined by a finite number of parameters in the limit as 

the shell thickness /L -+ 0. In particular, it will be shown in Sect. 8 that the static 

Kirchhoff theory corresponds to the case when the first two terms are retained in the 
Taylor series expansion of the function f : ( l ) 

f z (1 -1. e)< $ ‘(2Xi’ (3.2) 

and the functions flare considered zero. Further we assume that f and f” are known 
functions of 5 containing a finite number of free parameters, the internal degrees of 

l ) If si( :“) are components of the radius-vector of points of the middle surface in the 

deformed state, then the functions / and 1” should, as follows from (3. l), satisfy the con- 
ditions f (0, C) .= 0, 1’ (0, jZ) - 0 

However, zi (C”) could be defined by other methods. For example, it can be assumed 
that h/d 

1 
z’(p)::, 

I 
ri (5, 5”) 4 

Then the integral constraints --h.2 

t1 2 h/z 

s 
i (5.v 5”) 4 = 0, 

5 
1” (5, 5”) 4 = 0 

--hll hl2 

should be satisfied in selecting the dependence of the functions f and f’on 6. 
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freedom which we denote by pA (5”) 

f = f (57 PA)? f” - f” (5, PA) (3.3) 
Such parameters in the case of (3.2) are the quantities e and X. Knowing the depend- 
ences of f and fa on c and the parameters p A, the components of the metric tensor in 
the deformed state can be calculated by means of (1.5) : 

g,as = asp - 2fb3 + f%zP + g-g- + qa-f!3,C 

vznf’v,-fY - 2fb@YV?,^f, + 2 (3.4) 

Here %p, hap and c,p are coefficients of the first, second and third quadratic forms of 
the deformed surface, Vi is the covariant derivative with respect to the connectedness 

in Q. 
It is seen from (1.5). (3.3), (3.4) and (2.2) that the strain tensor components are known 

functions of the first, second and third strain tensors of the middle surface ( l ) 

&J = ‘1% (&p - auczci), BzB = b,y - bv,xp, cap = l/2 (cap - coap) (3.5) 

as well as 5, p-4 and V,-p” 

Eij - “ij (5. &. B,,. !I”, G,-,uA) (3.6) 

The functions (3.6) are easily written down in general form, however, it is more conve- 

nient to obtain them again every time in constructing specific models of shells. 
Let us determine on which quantities the components of the shell particle velocity 

vector w’i (5, t”, t) depend under the assumptions (3.3). Differentiating (3.1) with 

respect to time (the time was a parameter in all the preceding formulas in Sect. 3). we 

obtain 
’ i 

,%+ _. vi + (f”6ki - f&Q 
~‘=const 

where vi y- i3si / at are vector velocity components of points of the middle surface. 

The easily provable relationship 

(3.8) 

was used in deriving (3. ‘7). Thus, for given functions f and I” the vector velocity com- 

ponents of points of the shell depend in a known manner on the following parameters(**): 

w” :I wSi 
( 

5, 
i)gh- 8PA uk, _ ( x,h-, pA, _ 
a;% at i 

(X!,) 

l ) The third strain tensor is expressed in terms of Asp, s,a, a0.8 and boap by algebra- 
ic relationships. 

l *) The components of the normal vector are expressed in terms of tn’ by algebraic 
relationships. 
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4, Avatrging of the vrrirtlonrl equation. The variational equation 
(1.1) in elasticity theory is considered in the class of all twice-differentiable functions 

ri (P, t) ( or ~1 = ri - ~,,i). To obtain the fundamental relations of the theory of 

shells, let us consider the variational equation (1.1) in the class of functions (3. l), (3.2) 
( l ). Hence, the integral of the action 

1 =&idrdt 
IV 

as well as 6W and hW* become functionals defined by the functions zi (La, t), 

pA (c”, t) (or ui = zi - zOi, PA). Let us find the form of these functional% Let 

us take domains which are the direct products v = sJO X 5, where QO is any part of 

the middle surface with piecewise-smooth boundaries, and 1 5 1 <h/2 , as the domain 

V in (1.1). 
Since 

I = f$A~I/;d~d~Ld~2dt = ;d[dsdt, ds = I/Gd[‘dc2 (4.1) 

then 

I (ui, /AA) = jj Ldcsdt 
1 # 

where L is the Lagrangean averaged over the plate thickness 

h/2 

L 7:. 1 A v/x-d5 
-h/2 

We take the difference between the kinetic and internal energies (1.2) as the Lagrangean. 
Then L is represented as the difference between the averaged kinetic and internal ener- 

gies ha 

L=K--0, K= 
c 

h/2 

-h/2 

p,$ V%dC,’ @ = \ p,U v/xdc (4.2) 
--Al2 

Formulas (3.6), (3.9). (4.2) and (1.5) show that the averaged kinetic energy K is a 
function of the velocity vector components of the middle surface, their derivatives along 
the surface, the tangent vectors xsi, and also ,u A, @“iat , and the shell characteristics 

(4.3) 

while the averaged internal energy is a function of the first and second strain tensors 

of the middle surface, the parameters p” and their derivatives G,^ p”, and the shell 

characteristics KU (we include oO and h among the parameters A” to cut down the 

writing) 

The Lagrangean depends substantially on the second derivatives of the displacement 
vector of the middle surface (the argument avi / ae in the kinetic energy, and the 

l ) Such a method of obtaining the equations of the theory of shells, the passage from 

the general class of functions to functions of a special kind, is substantially the Ritz 
method. It was used by Reissner to construct a refined model of the linear static theory 

of plate bending. However, Reissner used a variational principle whose extension to arbi- 
trary dynamical physically and geometrically nonlinear models causes difficulties. 



argument B,:, in the internal energy), as well as on the internal degrees of ~e~dorn i”A 

and their first de~vatives. Substituting (3, I) and (3.3) into (3‘4) (taking account of the 

equalities &a = 6~2” and 6ni = - 2i%k (i%u R / 81;x>) and jnte~ating with respecr to 5, 
we obtain the following averaged expression fol 6 k: 

where i3fz0 is the ~undary of the surface $3 yD, and the c~ff~~ieu~ of the varja~io~ are 

determined by the formulas 

I’, .x {Pi VP’;;;: PiZ -- {p,, (-- lZi.Pf + b,“f”) I/ <I 

Here (it 1 denotes the sum ii /:__,l+z ; ,t j:w_h~~. It? is the determinant of the metric 

tensor of the surface CX? :.: g in the deform d state (dS2 is the bounda~ of sztl NW 
is the determ~naut of the metric tensor on the surface ilfk, I”, 5 in the initial state, rx 
are components of the unit tangent vector to ofi,,. in the case of a constant-thickness 

shell xt agrees with the quantity x defined by (2.3). 
Let us examine the meaning of the quantities (4.6) in the particular case of linearized 

theory and under the assumption that the fibers remain ~r~nd~c~lar to the muddle sur- 

face under strain, i. e. I” 2 0. Within the scope of linearized theory only the first mem- 

ber f I=” 5 of the Taylor series expansion of j sboutd remain in the producrs ir_l i . Hence 
/I_‘; z i~~i. Evidently, Pids is the sum of forces acting on a shell element 113 X ; and 

applied to the side surfaces 5 -: .~ - h;Z, PiGds is the moment of tangential forces acting 

on the side surfaces relative to the middle surface, multiplied by the normal vector t[b 
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to the middle surface, c)i is the transverse force, and Mi” is the moment, relative to the 

j = 0 axis. of the external forces acting on the surface tiR X 5 multiplied by ni *<Ii> 
is the momentum of a shell element averaged over the thickness, Ii” is the moment of 

momentum of a shell element multiplied by ni . The meaning of the quantities P,, J‘, 

and I.-i is related to the meaning of the parameters pA. 

An expression for 6u’* is obtained analogously to (4.5) 

6W* =: C C (Pi*6u’ + Pi*’ ~ + P,*611’) d5 dt (4.7) 
; 6, 

where 

The quantity Pi*da has the meaning of a total mass force acting on an element do >: 
6, Yi*a (in the linearized theory for f” 1 0) is the moment of external volume forces 

relative to the middle surface, multiplied by the unit normal vector ni. 

In conformity with (4, l), (4.2), (4.5) and (4.7), the averaged variational equation 
(1.1) becomes 

6\ S(K-U)dSdt+ 1 s[(Pi+ Pi*)6u'i-(Pi'+ Pi*')$$ + 
i 620 1 no b 

(PA + PA*)GpA ] dsdt + j C ((~i6U’ + dfi’$$ + S,6pA)dsdt - (4.9) 
I ah, 3 

6. System of equrtlon8 of the theory of Bhellr, Let us calculate the 
variation of the first member in (4.9) by considering that the functions PA in the domain 

of variation e,1 are twice, and ui fourfold differentiable 

(5.1) 

Here 



vrr are the components of the unit vector normal to the curve &t,, tangent to the sur- 
face 58, and directed exterior to 52,,, and c,” is the covariant derivative with respect 

to the con~ectedn~s of the surface 52,. 
Using the formulas (*) ii&ii 

6&p “~ - a?(” X;?,iq b&L1 -- niVa” V,i”&L” 
* 

(2.3) 

c”,-tp” E 

for the variations of the ~nter~ai energy, we obtain from (4.4) 

(5.4) 

Also &zA denotes the derivative t Lt ̂ p+== , &A, and 6u, are the projections of vari- 

itions of the displacement on the tangent and normal to D: 

(5U, -T 5zi61~i, 6U, ni6r~i, 

By integration by parts, the second member in (4.9) is reduced to the following: 

Su~t~tut~ng (5. l), (5.4) and (5.7) into (4.9) and first a~uming the variations firi” and 
61~” to be zero on the boundary of the three-dime~~onal domain QO :i( 1 *we obtain 
the equations of the theory of shells 

- V,” (pa” -i_ pi*“) :7 () (.5.8) 

*) The parentheses on the indices denote the operation of symmetrization; $ in(5.3) are 
~n~avar~ant components of any do-dime~ional vector in the 5” coordinate system. 
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The quantities in these equations are defined by (4.6) (4.8). (5.2) and (5.5). Equations 

(5.8) are the equations of shell motion, (5.9) are used to determine the degrees of free- 
dom p”.The equations of motion take on an especially simple form in the static case 
(the kinetic energy is K = 0). Projecting (5.8) onto the normal and tangent plane to 

9 and using (5.5). we obtain 

.+ P Q!J (I - nz9b+ -= y-h’ [Pi f Pi* - C,” (~j” + Pi*“)] (5.10) 

C;, ̂ ,+ + q’baa 7 flgir [pi + I$* - Qzo (pi" + pi*')] (5.11) 

The members in the left sides of (5. lo), (5.11) agree outwardly with the corresponding 

terms in the equilibrium equations ordinarily used in the theory of shells. In the right 

sides of (5. lo), (5.11) are written what should be understood to be the external forces 
acting on a shell element. Let us emphasize that the tangential forces on the surface 

; = t h / 2 yield a contribution to (5.10) which is the projection of the equilibrium 
equations in the normal direction to the middle surface. This contribution is described 

by the tensor Pi3< (see (4.6) ). The tensile force tensor nz3 .and the bending moment 

tensor m19 are given by the equations of state (5.5). The moment equations, which are 

usually appended to the system of equilibrium equations (5. lo), (5.11) are the definition 
of the quantities q1 (5.6) in the theory under consideration. 

In the dynamic case (kinetic energy K + Cl) , the projections of the variational deri- 
vative y-’ 6K / &Li on the normal and on the tangent planes to Q , i.e. y-WGK / 6ui 
and - y-‘s,i6K/&d , should be added to the right sides of (5.10). (5.11). The dynamic 
equations are simplified for shell models in which it is assumed that the normal to the 

middle surface goes over, under deformation, into a normal (the functions ,P in (3.1) 

equal to zero). As is seen from (3.7) and (4.2). the kinetic energy depends on ~~1 and 

the velocity gradients LW / 0’5” only on terms of the combinations 

a,9 = gijXaiX,G, n,liI~:i)n’__ _xiln. g 
at -- h ag” 

The variational derivative of K becomes 

6K if aK 
y=--- 
ad at avi 

aK ( 
+ 2% 7 

aI3 I 
(5.12) 

Substituting (5.12) into (5.8) and introducing the notation 

(5.13) 

we write the dynamic equations as follows: 

+Tl’[Pi + Pi*- C,’ (Pi” + Pi*“)] (5.14) 

Q, -( nap 2 aK 

-7 aa,, -)-I N’b&+ $$ = 

-i$ xia [Pi + Pi* - Q,' (Pi” + P~*‘)J (5.15) 

The relationship (5.13). which is the definition of N43, can be considered, as before, as 
the equation which replaces the equation of the moment of momentum. Projections of 
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the derivative of the momentum on the normal and tangent with respect to time as well 
as the dynamical addition to n IQ (the second term in parentheses on the left side; this 
term can be essential only in nonlinear theories) appeared in the equations of motion 

(5.14), (5.15). 
Let us consider the additional relationships which can be extracted from the variation- 

al equation (4.9). For arbitrary variations Qui and 6pLn on the boundary of the 1’ :,-: i 
domain (4,9) reduces to the following: 

(.Wi - yT7ZasVj?2i) (5.16) 

This equality cau be satisfied if it is assumed that 

(5.li) 

The equality (5.16) is also satisfied for other values of Qi, Mi”. . . . (this question 
has been considered in r2J for arbitrary models of continuous media with high deriva- 

tives). However, in all the relationships used later, the quantities Qi, ilifi”, . enter 

in combinations for which the existing arbitrariness is immaterial. Formulas (5.17) can 

be considered as the definitions of the quantities vi. . . . . I ..,. 

8. Boundary condltlonr, As in general theory of models of continuous media, 

let us give the boundary conditions bv specifying the functional 

(6.1) 

which is the work of the external forces on the possible displacements &ti and cip=‘l 

on the shell madam, The external forces do work not only on the displacements 6ui 
o$ the shell edge, but also on the gradient of the displacements &u’ i ap. The work 
on the gradients of the displacements is performed, in conformity with (5.17) by the 
bending moments 

U 
Al/ 13 $ dsdr.- i\ *jm’.‘v:,n “” dsdt 

. ? iag” (&a) 
1 0510 ?Ch,, 

It is convenient to decompose the gradient of the displacements 8%~~ ! iJ5” in (6.2) 

into the derivative along the normal to i&j, and into the derivative along &Z, 
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Then the work of the bending moments is represented as 

The first member is the work of the bending moments, and the second one of the torques. 

We represent the total work of the external forces on the possible displacements by using 

(6.3) and integrating by parts, as 

The last integral in (6.4) is zero if there are no points of discontinuity in the quantity 
yma~iT,vqzi6u' on the contour c~S!, . The procedure of integrating by parts is the repla- 

cement of the system of torques Dy an equivalent transverse force. The expression (6.4) 
for 6,1(r) possesses the advantage that the variations 6~’ and r%u’ i 8x7 are independ- 
ent. 

Let us prescribe the work of the external forces on the shell boundary 

(6.5) 

Here Qi is the external force applied to the shell edge, M is the external bending mo- 

ment. Various boundary conditions can be obtained from (6.4) and (6.5) depending on 

the construction of the function class. For example, if displacements are given on the 

boundary, then 6~’ = 0 and by virtue of the arbitrariness of ni &?ui / & and 6pA 

,,l=PvJ’:, 7. >I. s/, T S/, (6.6) 

When there are no constraints on the displacements on the boundary, then by virtue of 
the independence of 6~’ and i)c%ci : 3%~ we obtain from (6.4) and (6.5) in addition to 

(6.6) a 
(,i - _ (ym”‘T,Vgni) = Qi a,\ 

(6.i) 

If vi and nt’> are defined in terms of the internal and kinetic energies by (5.6), (5.17). 

then the left side of (6.7) can be considered as the internal stress resultants originating 
to equilibrate the external forces Qi. It is essential that these internal stress resultants 

depend on the curvature of the middle surface and the curvature of its boundary. 
As is seen from a comparison between (6.4) and (6.5). the last integral in (6.4) vani- 

shes and in the presence of points of discontinuityJ[, of the quantities J~N”%zv?z~~i 

on the boundary. We obtain the following relationships: 

(ym%-xT;,ni)+ : (yma%zTpi)_ (6.8) 

at the points :lf,for continuous variations 6u, on i;<,!, from the equality of this integral 
to zero. The plus and minus symbols here denote the limit values of the quantities upon 

approaching 1~1, from the right and left along 89,. The equality (6.8) means that if 
the normal vector to the middle surface is continuous in the deformed state, then the 
magnitude of the torque should be continuous (in linearized theories y = 1). 

The equality (6.8) makes sense only when the appropriate limits (yma3Tavgni)* 
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are defined. The conditions at the singular points at which there are singulatities can 

also be obtained by variational methods, and even the nature of the singularity can be 
determined, however, this is a topic of a separate investigation. 

7. Conditlonl on line8 of dl#continuity, On the surface 9, let there 
be a line r on which the derivatives of the displacements and the parameters 1~~~ can 

be discontinuous. The line r generally moves along 0”. Let us establish the conditions 
which should be satisfied on the lines of discontinuity. 

A moving line r outlines a two-dimensional surfaci 

5 F” (s, f) (7.1) 

in the three-dimensional space of the variables jl, :“, i . Witilout limiting the gene- 
rality, it can be assumed that this surface separates the domain Q2, >(. t into two parts. 
Let quantities in one of them be denoted by the subscript 1, and in the other by 2. Tite 
quantity of conditions on the discontinuity depends on the construction of the function 

class in the neighborhood of the surface of discontinuity 1’ ‘, t. The admissible func- 
tions ui and p* in each of the domains 1 and 2 have fourth and second derivatives, res- 

pectively, by assumption. Let us consider the component-s ui of the displacement vector 
to be continuous in 1’ ” I . Assumptions relative to i1.l and the derivatives of Ui are 

made below. 

There are two possibilities for the functions (7.1): (1) The functions (7.1) are speci- 

fied, the motion of the line of discontinuity is known, and the admissible functions under- 

go a discontinuity on a surface fixed in advance, and (2) the motion of the line of dis- 
continuity is to be determined, the admissible functions may discontinue on any (no lon- 

ger fixable) surface r X t, therefore the surface I’ S t itself (the function (7.1) ) is 

also subject to variation together with (I’ and CL”. 
Let us first consider the case (1) when the motion of the line of discontinuity is known. 

The Stokes formula which was used to evaluate the variation 

(T.2) 

for the integration by parts, is complicated for functions having discontinuities, and is 

(7.3) 

where A and (I), are arbitrary functions undergoing discontinuities on 1‘ i: t, c is the 
velocity of the motion of the line of discontinuity along its normal, and by assumption 
the unit vector Y= of the normal to 1‘ is directed from the side 2 to the side 1. The ad- 

di tion 
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c asu’ a@ 
- 7 (rz”~fja - qPni) (jui _t rml?ni - j 

a:= 
----&LA v, w,* 1 1 dsdt = 0 (7.4) 

appears in the expression for the variation (7.2) in conformity with (7.3). The fact that 
this addition is zero follows from the variational equation (4.9) and the independence 
of the variations on (3Q0 and I’. Besides the functions ui let duiiap;, pA also be con- 

tinuous. Then 
]8U’] = 0, 

Hence, (7.4) reduces to 

Extracting the independent variations from this relationship by integration by 

logously to Sect, 6), we obtain the following conditions on the discontinuity : 

r aK 
!aU' V1 - [ r)2195i3 - Trl~ni J V,~ - 

dli 

(I I a2,,' 
C - [~UZ’:‘ni] Vp = 0 

[~m.1812i]YxV<, .- 0 

parts (ana- 

(7.5) 

(7.6) 

If a discontinuity of the derivatives of the displacements u,~ =- ~“(8ui / hi;“) along 

the normal is assumed, then the variations 6u .,l become independent on both sides of 
the surface r X t , and we obtain from (7.4) in place of (7.6) that the combination 

(7.8) 

vanishes on each side of r x 1. Analogously, in the case of a discontinuity of it”on 
l’ c I: the quantities dk’ I)(11 

- c - -7 v, --= 0 
dp-‘” tip. 

(7.9) 
.I 

vanish on each side of the surface r X 1. 
Now, let the motion of the line of discontinuity not be known, and let it require to 

find the solution of the problem as a result. To do this, additional conditions are neces- 
sary. We obtain the appropriate conditions from the variational equation (4.9) by con- 
sidering it in the class of all functions undergoing a discontinuity on some (no longer 

fixable) surface l? Y t. The surface r i( t itself is hencesubject tovariation together 
with the functions ui and pL” - 

It is seen that the variational equation (4.9) reduces to the equality (7.3) in which the 

member 

is added in the left side, where sg” is the variation of the functions (7.1), and 6ui and 
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6~” denote a variation of the form of the functions tfi and I”“. 
let us consider that W, u.% ’ z CW f W, itn are continuous on I’ ,’ t . In tilis case 

the total variations 

Gnui = &A’ -j- U;,6~X. snufz = &2, + G&Q@. 61rl.P --.: 6l.P f c,$%;X 

are continuous on r X t 

[6nu’) = 0, [&&] --. 0. [finpAl --- () 

First assuming a<” (1 (hence 6~ : 6). we obtai; (7.5) - (7.7) from (7.3). Rela- 
tionships which reduce to the following energy condition when using the kinematic con- 

ditions : 

follow from (7.3) for arbitrary &a . 
If the derivatives d/r’ i c/c" are discontinuous on 1’ c t then we obtain (7.3) from 

(?,3) instead of (7.6), and the following relation instead of (7.10) : 

(0’ {It: 1] Y”) 

If the parameters 1’” are also discontinuous on r ./ t, then condition (7.7) is replaced 

by (7.9). and the additional energy relationship has the form (7.10) or (7.11) (for 0” =O 

or @ _i 0). Hence, the last member in (7.10) vanishes by virtue of (7.9). 

8, Iilurtrrtlon. Linsrt rtrtfct of laotropic pfatb8, Let us consider 
physically and geometrically linear models of isotropic plates for which the internal 

energy ~JI’ is 
2:,L.. j. j’;?)’ : .‘@tiijF1? @.I) 

Because of the geometric linearity of the theory, (1.5) and (3.4) simplify ( f -. i;, !“, 
,I y,. u,p, Cap in (3.4) should be considered small), and result in the following relation- 
ships : . 

F,,, I,., --. $,y, v (a!:+ (X.2) 

The corresponding linearized expressions for A,:, and U,, are found from (3.5) 

3r,,’ 
A,;* - - p (1, 

(1 P)’ 
u a:, Vx61;P,,* (Jx _- - Ui * 

;“i” 
I<,& :- II,, l,& (8.3) 

Let US take the hypothesis that the normal to the middle surface remains normal under 

deformation j”. 0 W-4) 

and the function f has the form (*)(Footnote on the following page). 
f II- (1 !- e) ; -.; ’ 2 xi’ (8.5) 
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Then 

Therefore, the parameter e has the meaning of deformation of a fiber normal to the 

middle surface, and x is the gradient of fiber deformation. 
We obtain for the averaged internal energy (the plate thickness is considered constant) 

IL J:! 
“(1) = 2 

.-L: 
pC’ d; = h(i. ( Ilo)’ -j- 211. I,:,A33 -. 2h.4,“e (h -:- 2~) e’) - 

> 
i,3 
12 {i_ (I~,~)” .: “pu,p‘ - 2i.lll’j: ‘- (k f “p) 22) 1. (8.7) 

I,” ,iP <It! Il.5 q f/X 
P1.’ 101,’ --7 7 + p - fix.’ : 7 

oj* (I, 911 <ILL z cl;,’ 

The last two terms can be substantial only on the edge of the plate, while they are of 
the order of i? / I-” far from the edge as compared with h (P. $ 211) ~3 and h” 0. -r 211) X2 

respectively, and they can be neglected ( Id is the distance whithin which e and ^/. 

vary by the characteristic value). 
The tensile stress resultants and moments are defined by (5.5) 

, % ; h 0.. 1,w -!- “I-‘. IX.’ i.r,c”,‘) 
(KS) 

MS ’ c ; (q%1~~ .!.. .‘I&“.’ i.%,,’ ‘) 

Ewations( S.1 O),( 5.11) become 
h/2 t1/2 n 

~‘.~::,,c=~’ ,. = I’+ + K - -$- ‘i* (11 ’ -- /,_‘) I \ pFd; ( VI \ pF’; d; 
v. I,, 2 .;,.2 

I, .’ 

T.1,“. Z 
.’ [,p_l + p 2 f j _p= II;;) (S.!l) 

1, ’ 

The plus and minus subscripts here denote quantities on the surface 5 = /, :! and : = 

--h/2 , respectively, P is the projection of the force acting on the surfaces ; ‘,hiZ 

in a direction normal to the plate, 11’ is the projection of this same force on the middle 

plane of the plate, and the notation for the external mass forces F and Flare analog- 

ous. The Euler equations (5.9) for the parameters r and x reduce to 
Ii? 

h [(i. +)I, h.l,QI - +(p 
0 

p 1 + \ :,r; 7; 

l ) It should be noted that the hypotheses resulting in the Kirchhoff model are formulated 
incorrectly in many monographs and papers. Namely, besides the condition (8.4), an as- 
sumption is made that the transverse fibers are not deformed. In reality, in the case of 
plate bending (Al., = 0, e = 0) deformation of a transverse fiber, described by the para- 
meter %. yields a contribution of the same order of smallness to the elastic energy, as 
does deformation of the middle surface. 
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Eliminating the parameters e and x from the system (8.8) - (8.10). we arrive at the 
equations of the theory of plates. 

The author is grateful to L. I. Sedov for discussing the research. 
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We construct an algorithm for seeking a real canonic transformation of a linear 
Hamiltonian system of differential equations to normal form. As an example 

we consider the application of this transformation in the restricted three-body 

problem. 

1, We consider the Hamiltonian system of differential equations 

dx!& c IH([)x, x ~(1~. . . . ..r.. I,,,~ ,..., r2,J (1.1) 

The variables :rk and J,,+ J! are canonically conjugate (5k are the coordinates, 2,.~‘. 

are the momenta) in the corresponding mechanical problem. The %z th-order symmet- 

ric matrix H(r) is assumed real, continuous, 2n-periodic in t. The matrix I has 

the form 
1-_ 

u 

0 El; 
(I-’ -; I’ - I, 12 = - E, det I = 1) 

- E O!,’ 

where E is the nlh-order unit matrix. 
The solution of a linear system is usually chosen as the generating solution when in- 

vestigating stability, analyzing nonlinear oscillations, constructing approximate solutions 
of nonlinear Hamiltonian systems. Therefore, it is desirable to choose those coordinates 

in which the solution of the linear system (1.1) is described most simply. 
System (1.1). as also every linear system with continuous periodic coefficients, is re- 

ducible [l]. This means that there exists a linear change of variables with a continu- 


